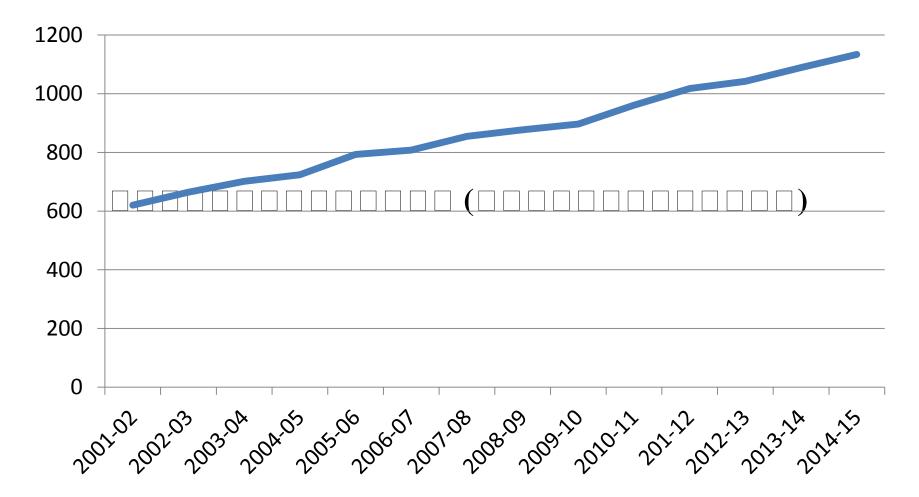


Maize Production and Maize Breedingin Myanmar



Maize Production in Myanmar

- Maize can be widely grown across different ecological zones in Myanmar : potential for horizontal & Vertical
 Mainly grown in rainy season : in Shan, Kayar states and Magwe , Mandalay and Sagaing (Lower / South) Bago (upper /north)
 - In post monsoon season ; maize is grown across
 the country with supplementary irrigation

 (Ayeyarrawady Magwe , Mandalay and Sagaing Bago)
 High Market Demand in the world for various utilization (Bio-fuel, Animal Feeding, Value Added Products)

Maize Cultivation in Myanmar

Maize Production of Myanmar

Metric tons in thousand

Source :

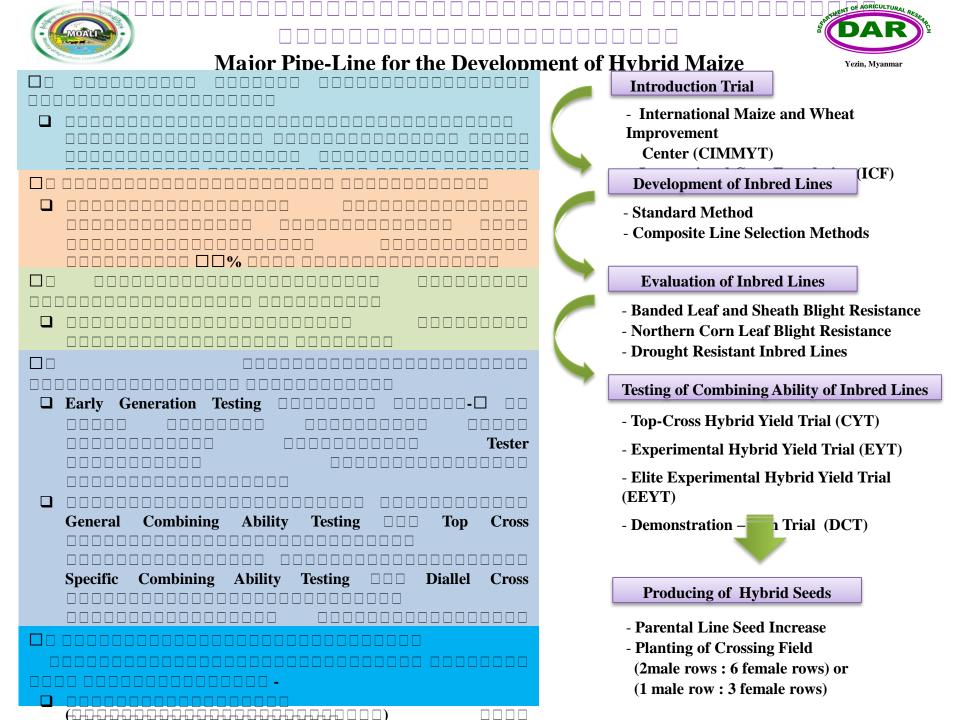
Agriculture in Brie

Factors Needed to Improve Maize Production System in Myanmar

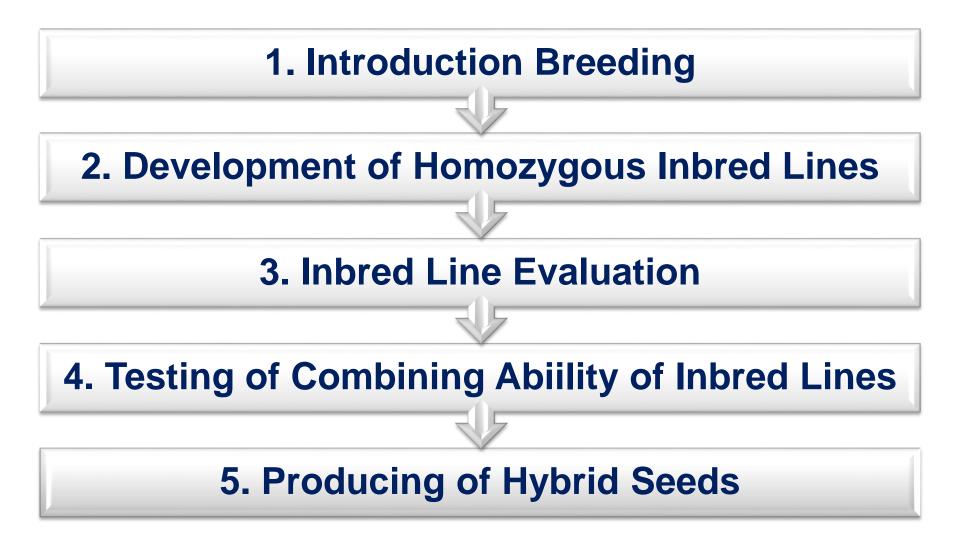
- Private participation and seed sectors
- Application Productive and Efficient & Sustainable Production
 Technologies (ie; Integrated Nutrient Mgt
- Post Harvest Technologies & Facilities
 - (Harvesting, Drying, Threshing, Storage)
- Systematic Establishments of Various Stakeholders' Association
- Sustainable Markets by cooperation of Private-Private, Public-Private
- Policy development, regulation and supports for Maize & Value Chain

Maize Breeding in Myanmar

Background


□ Maize breeding was initiated with the establishment of Central

Agriculture Research Inistitute in 1974-75


□At begining , many open pollinated varieties were evaluated and selected ,and successfully released (OPVs varieties)

□ Hybrid maize was initiated by introducing exotic inbreds from CIMMYT, but not adapted in Myanmar.

The first Hybrid maize varieties (Yezin Hybrid Maize-1 and 2) were released in 1991-1992 by developing own inbred lines and Hybrid breeding research

Major Pipe-line for the Development of Hybrid Maize

1. Introduction Breeding

- Genetically diversed high yielding OPVs and hybrids from local and exotic germplasms are used as source materials in the extraction of inbred lines
- □ Plants with good agronomic characters are selected and selfpollinated to obtain segregation generation - 1 (S_1)
- This step is carried out in Maize and other cereal crops Section, Yezin, Tatkone, Aung Ban and Naungmon Research Farm
- □ CIMMYT has been a main partner and source of germplasm since 1972.

Selection Criteria in Line Development

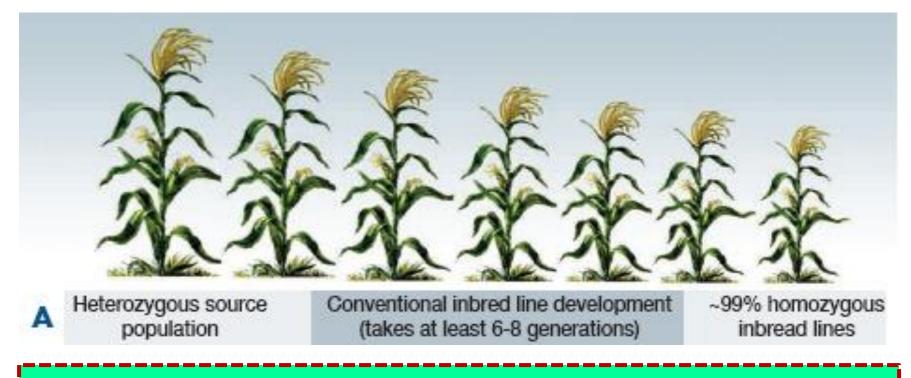
Female Parent

• Male Parent

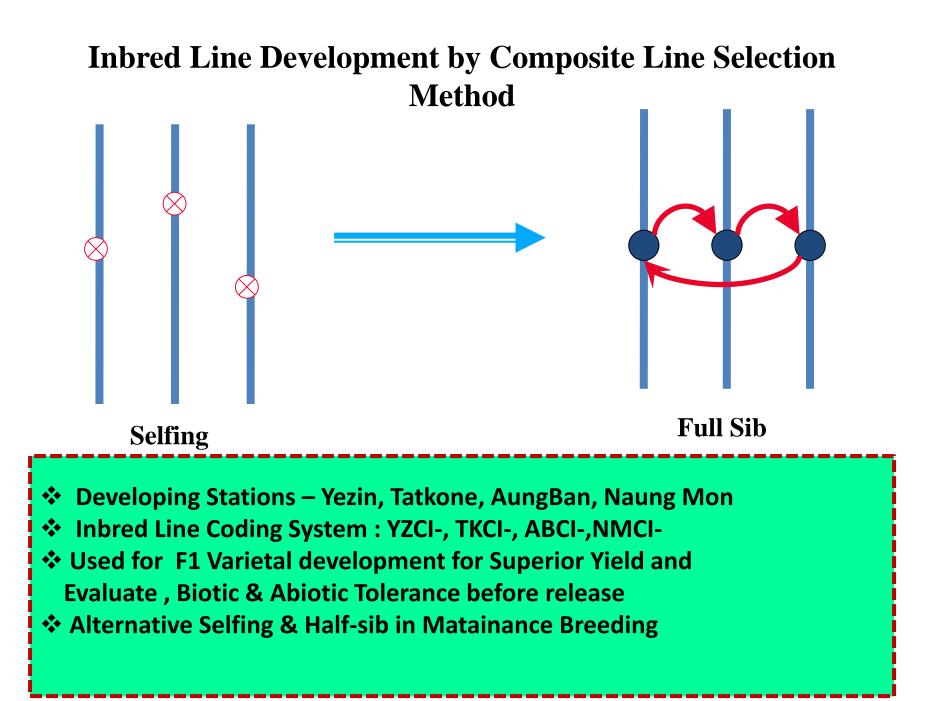
- Two ears per plant
- Good Shelling Percentage
- 2-3 days flowering than male parent
- Easy to Detassel
- Resistance to lodging

- More pollen producing
- Long pollen producing time
- Plenty number of branches of tassel
- Higher plant height than female parent
- Later than female parent in flowering
 - time

2. Development of Homozygous Inbred Lines


Development of S1 to S6,
 S7 generation by Standard
 Method (Ear to Row)

Development of inbred
 lines by Composite Line
 Selection Methods



Inbred Line Development by Standard Method

- Developing Stations Yezin, Tatkone, AungBan, Naung Mon
- Inbred Line Coding System : YZSI-, TKSI-, ABSI-, NMSI-
- Used for F1 Varietal development with targeted traits : Age, Disease Resistant,Drought Tolerant
- Alternative Selfing & Half-sib in Matainance Breeding

Maize Hybridization

Single Plant selection & Labeling

Bagging on Ears

Maize Hybridization Pollination by Hands

Number of hybridization was done due to requirement of the program

3. Inbred Line Evaluation

- Evaluation for yield and adaptability
- □ Screening for Northern Corn Leaf Blight (NCLB)
- □ Screening for Banded Leaf and Sheath Blight of Corn (BlSB)
- □ Screening for drought tolerant Lines
- Genetic Diversity : Clustering by Phenotypic & Genotypic

Characters

5. Evaluation of Promising Maize

- Producing and testing of Experimental hybrids (EYT-Trails)
- Producing and testing of Promising hybrids (EEYT-Trails)
- □ Evaluation of Selected Promising F1 for Biotic and Abiotic Stress Tolerance
- (Demonstration-cum Trial) on Farmers' Field and Varietal Selection with Farmers' Participation

4. Testing of Combining Abiility of Inbred Lines

- Producing and testing of Top-cross or Test-cross Hybrids for GCA
- Producing and testing of Diallelcross Hybrids for SCA
- Producing and testing of Elite Experimental Hybrids
- Producing and testing of Promising hybrids (Demonstration-cum Trial) on Farmers' Field
- High-yielding hybrids resistance to climate

Selection Criteria for Hybrid Maize

- Yield Superior : 20-30 % than Commercial Checks
- Age (<100 for Early, > for Moderate HYV)
- Better in Yield and Yield Component Characters
- Other desirable plant characters

Profuse Brace Roots, Erect leaves with long Greeness, Srong Stalk diameter, Seed Color, Narrow ASI,

Husk cover, Tolerance in Botic & Abiotic Stress

5. Producing of Hybrid Seeds

- Trial / (DUST) for TSC & NSC for New Hybrid Varieties Registration
- Parental Lines Seed Increase
- Planting of Crossing Field
 - \checkmark (female rows: male row: 4:2, 4:1, 6:2 due to nature of parents)
 - ✓ Synchronized flowering , Detasseling of Female Plants

Application of Biotechnology In Maize Breeding

- Genetic Diversity and Identification with molecular marker
- Marker Identification for Specific traits

Department of Agricultural Research

VISION

Food Security and Nutrition with the impact of innovative advanced crop variety and production technology research.

Department of Agricultural Research

MISSION

To systematically conduct research and development onrice and other cereal crops, oilseed crops and food legumes, industrial crops and horticultural crops,soil and water utilization,agricultural engineering, cropping systems and agricultural economics, biotechnology, seed bank and germplasm conservation and plant protection.

Mission of Our Section

RESEARCH AND DEVELOPMENT OF MAIZE AND OTHERS CEREALS CROPS

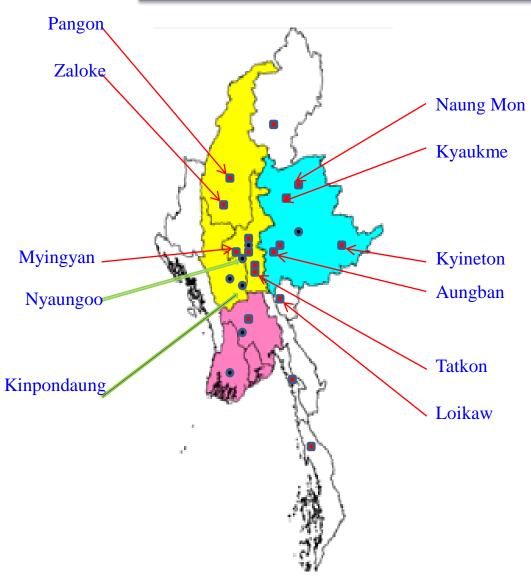
Sorghum

Wheat

Millet

Staff of Maize and Other Cereal Crops Section

Sr. No	Qualification	No. of Staff
1	Ph.D	1
2	M.Sc	6
3	PGD.Ag	2
4	B.Ag	10
5	Dip.Ag	4
6	Other Staff	4
	Total	27


On going research

Sr. No	Research Title	Research Team		
1.	Development of sweet corn and waxy corn varieties with better eating quality	Daw Ye Ye Nwe, Daw Mi Mi Khaing, Daw Aye Sandar Win, Daw War War Khaing Soe		
2.	Development of locally adapted High-yielding hybrid maize varieties	Daw Khin Nyein Chan, Daw May Thet Naing, U Nay Aung, Daw Poe Nandar Myo Twin, Daw Moe Moe Soe		
3.	Development of Early hybrid maize varieties	Daw Khin Marlar, Daw Aye Thidar, Daw Pyi Thu Zin		
4.	Development of disease resistant varieties	Daw Phyu Thi Thi Nyein, Daw Shwe Sin Oo		
5.	Development of drought resistant varieties	Daw Kyu Kyu Hlaing, U Nay Aung		

On going research

Sr. No	Research Title	Research Team
6.	Development of quality protein	Daw Thwe Thwe, Daw Sandar Myint,
	hybrid maize varieties	Daw Aye Thidar
7.	Hybrid Seed Production	U Si Thu Myint, U Myo Min Tun
8.	Development of sorghum and millet varieties with high yield of	Daw Lwin Lwin Myint, Daw Aye Thidar, Daw Shwe Sin Oo
	grain and fodder	Daw Aye Tindai, Daw Shwe Shi Oo
9.	Development of wheat varieties with good quality	Daw Ye Ye Nwe, U Maung Maung Swe, Daw Mi Mi Khaing, Daw Chan Myae Thu

Crop Research Centers and Satellite Farms under DAR

State/ Division	Crop Research Center	Satellite Farm
Kayah State		1
Sagaing region		2
Mandalay region	1	1
Magway region	2	-
Shan State (South)		1
Shan State (North)		2
Shan State (East)		1
Total	3	8

International Collaboration

International Maize and Wheat Improvement Center (CIMMYT)

International Corn Foundation (ICF)

 International Crops Research Institute for Semi-Arid Tropic (ICRISAT).

1. Open-pollinated Maize Varieties

No	Variety	Year Released
1	Akari	1979
2	Shwe War-13	2010

2. Hybrid Maize Varieties

No	Variety	Year Released
1	Yezin Hybrid No-6	2010
2	Yezin Hybrid No-10	2013
3	Yezin Hybrid No-11	2013

3. Fresh Corn Variety

No.	Variety	Year Released	
1	Yezin Fresh Corn-1	2013	

Yezin Fresh Corn-1

Salient Characteristics of Widely Grown Hybrid Maize Varieties

Yezin Hybrid –10

Variety Characteristics

Type of Hybrid	Single Cross Hybrid			
	$(YZI-C_2 \times YZI-C_7)$			
Days to maturity	100 - 110 days			
Ear per plant	1.5			
Ear length	18 cm			
Kernel color	Reddish Orange			
1000 kernel weight	317 g			
Shelling %	84%			
Yield	7.4 - 7.7ton ha ⁻¹			
Location	Lowland region			
Salient characters	Drought resistant, big ea			
	cover, tip fill, good			

Drought resistant, big ear, good husk cover, tip fill, good shelling %, moderately resistant to banded leaf and sheath blight of maize.

Yezin Hybrid –11

Variety Characteristics

Type of Hybrid	Single Cross Hybrid
Days to maturity	(YZI-D ₁₅ x YZI-C ₇) 105 - 115 days
Ear per plant	1.5
Ear length	18 cm
Kernel color	Orange
1000 kernel weight	285 g
Shelling %	85 %
Yield	7.1 - 7.8 ton ha^{-1}
Location	Highland region
Salient characters	Semi-flint type with seed colour of orange. Grain filling to ear tip.
	Drought resistant variety with good shelling percentage.

Yezin Fresh Corn – 1

Variety Characteristics

50% flowering	45 days
Ear length	18.9 cm
Row Length	16.3 cm
Ear diameter	4.3 cm
No. of rows per ear	12
Kernels per row	32
Seed colour	Milky
Fresh ear weight	250 g
Marketable ear	16500 (ear/ac)
Eating quality	Very Good
Location	All lowland maize growing regions
Salient characters	It can be harvested 20-25 days after
	flowering, good eating quality, sticky
	and sweet, open pollinated variety.

Distribution of Hybrid Seed form 2011 to 2015

Sr.	Name of	Distribution (kilo)				
No	Varieties	2011-12	2012-13	2013-14	2014-15	2015-16
1	Yezin Hybrid-6	3200	2250	3175	450	450
2	Yezin Hybrid-10	-	7500	19000	3600	3600
3	Yezin Hybrid-11	-	1250	-	375	375
4	Yezin Hybrid	-	31500	8800	2475	2475
	Total	3200	42500	30975	6900	6900

Distribution of Open-pollinated Varieties form 2011 to 2015

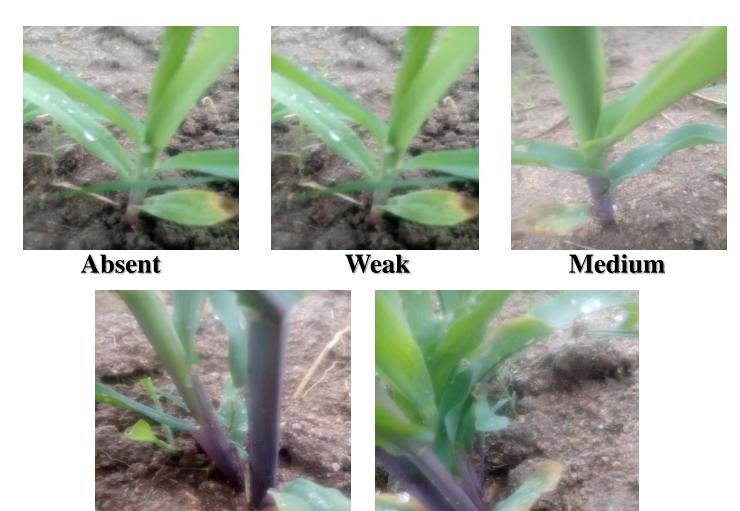
Sr.	Name of	Distribution (kilo)				
No	Varieties	2011-12	2012-13	2013-14	2014-15	2015-16
1	Shwe War – 13	75	100	150	100	75
2	Akari	15	20	15	50	25
	Total	90	120	165	150	100

Distribution of Wheat Varieties from 2011 to 2015

Sr.	Name of	Distribution (kilo)				
No	Varieties	2011-12	2012-13	2013-14	2014-15	2015-16
1	Zaloke White-1	82	72	82	20	30
2	Zaloke White-2	112	97	90	30	30
3	Zaloke White-4	10	-	-	-	-
	Total	204	169	172	50	60

Research Activities Related To New Plant Variety Protection for DUS Testing

No. of tested varieties Date of sowing Date of harvesting Plot size Spacing


Data collection

94 Inbred Lines

19.6.2016

- 20.9.2016
- → 4 m x1.67m
- \rightarrow 0.8 m x0.25m
- \rightarrow UPOV TG

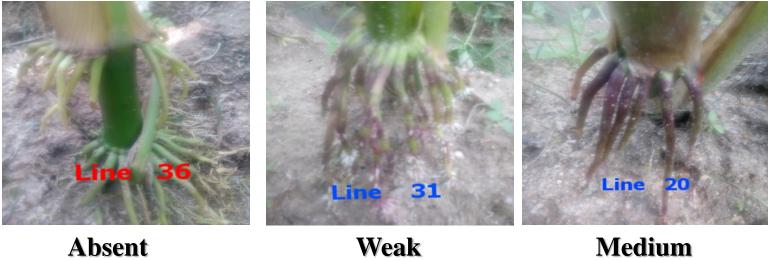
First leaf : anthocyanin coloration of sheath

Strong

Very Strong

Ear : anthocyanin coloration of silks

Absent



Very Strong

Root: anthocyanin coloration of brace root

sem vv

Strong

Very Strong

YZSI-14- 038

YZSI_14_016

3. cylindrical

2. Conicocylindrical

Characterization of DUS Testing In 2017

No. of tested varieties	\rightarrow	215
Date of sowing Plot size	\rightarrow	8-11-2017 4 m x1.67m
Spacing	\rightarrow	0.8 m x0.25m
Data collection	\rightarrow	UPOV TG

Thank You

